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Mozer & Sitton 1IntroductionIf we had really huge brains, say the size of watermelons, attention would play a much smallerrole in our behavior. Its signi�cance stems primarily from limitations in our processing hardware.We simply do not have su�cient brain capacity to analyze all information that passes through oursense organs, to reason exhaustively about all possible courses of action, and to maintain multipleinterpretations of the world. Attentional selection is needed to determine what information will beprocessed by the available hardware.Consider the task of recognizing objects in a visual scene. What sort of processing resourceswould be required to identify all objects in parallel, regardless of their positions, orientations,and size in the scene? If we are familiar with o di�erent objects, and any object can appear inany of p horizontal or vertical positions and r orientations and s scales, the number of di�erentobject instantiations is op2rs. This number would be far larger still if the objects are not rigid.Regardless of the nature of the recognition process, the number of possible object instantiationsroughly determines the amount of processing resources required. You can plug in reasonable guessesas to how many object instantiations are possible; 100 million might be a reasonable ballpark �gure.If we limit ourselves to one object at a time, however, and the object's position, orientation, andscale are computed �rst, then the number of object instantiations that have to considered at onceis only o, or a number more like 10,000. Ballard (1986) and Tsotsos (1990, 1991) have presentedcomputational complexity analyses of this sort to argue that the combinatorics of vision requiresome type of attentional selection to reduce the number of possibilities that need to be considered,and that attention can be particularly bene�cial when exploiting knowledge of the particular taskbeing faced by the visual system.In accord with the computational arguments, human vision shows strong limitations on howmany objects can be processed and identi�ed in parallel (e.g., Duncan, 1987; Mozer, 1983, 1989;Pashler & Badgio, 1987; Shi�rin & Gardner, 1972; Schneider & Shi�rin, 1977; Treisman & Schmidt,1982). In general terms, one can conceive of processing of a visual stimulus as occurring alonga certain neural pathway. If the processing pathways for two stimuli are nonoverlapping, thenprocessing can take place in parallel. But if the pathways cross|i.e., they share common resourcesor hardware|the stimuli will interact or interfere with one another. One role of attention is toreduce this interference by restricting the amount of information that is processed at once.In this chapter, we examine the role of spatial attention from a computational perspective.Because the function of attention can be understood only in its relation to visual informationprocessing, we must model not only the attentional system itself, but also the process of objectrecognition. We begin by presenting a basic model of object recognition, showing that interferenceprevents the system from reliably processing multiple, complex stimuli, and then we show how asimple mechanism of attentional selection can reduce this interference. Our initial goal will be topresent a model that is computationally adequate, that is, a model that has the computationalpower to perform the sort of visual information processing tasks that people do. Psychologists aremost concerned with another issue: whether the model can explain various experimental �ndingsand whether it has any ability to predict the outcome of further experiments. In our view, thedemands of computational adequacy and explanatory/predictive power are complementary, and acompelling account should satisfy both, and in so doing, allow one to understand the mechanismsthat underlie information processing.
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Figure 1: A connectionist processing unit. The arrows on the left depict inputs to the unit, andthe arrow on the right depicts its output.What is a computational model?Models are often divided into two categories: descriptive and process models. Descriptive modelsprimarily describe the data obtained from experiments via mathematical equations. In contrast,process models explain the cognitive mechanisms underlying performance in a task. Process modelsvary in their abstractness, from qualitative verbal descriptions to quantitative computer simulationsthat embody the cognitive process. Computational models are process models that lean toward thequantitative end of the spectrum.Computational models come in many varieties. In the area of spatial attention, some modelsare abstract mathematical characterizations of behavior (e.g., Bundeson, 1990; Sperling & Weich-selgartner, 1995), others are algorithmic, describing behavior in a sequence of steps much like acomputer program (e.g., Ullman, 1984; Weismeyer & Laird, 1990), and still others, called connec-tionist or neural network models, attempt to capture the operation and functional architecture ofthe brain. Connectionist models are large networks of simple, autonomous, neuron-like processingelements (McClelland, Rumelhart, & Hinton, 1986).We focus on connectionist models for several reasons. First, connectionist models have provenextremely useful for explaining psychological phenomena in visual perception and attention. Sec-ond, while connectionist models do not necessarily describe information processing at a neural level,connectionist models make contact with neurobiological data more readily than do other types ofcomputational models. Third, connectionist models tend to o�er a deeper level of explanationthan do more abstract frameworks; for example, a mathematical model might treat an attentionshift as a primitive operation, whereas in a connectionist model, the attention shift is an emergentconsequence of the model's dynamics. Fourth, computer vision research has shown that tasks suchas object recognition requires massively parallel, distributed processing (e.g., Marr, 1982), of thesort found in connectionist models. Fifth, and perhaps most important, it is our intuition thatconnectionist models are the right level of description for characterizing the essential propertiesof visual perception and attention. Ultimately, one must trust their intuition in selecting a set ofmodeling tools.Connectionist modelsThe basic element of a connectionist model is a neuron-like processing unit. Figure 1 shows a typicalunit. The unit conveys a scalar value, its activity level, to other units. The activity level can bethought of as something like the average �ring rate of a biological neuron. The activity of unit i is
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ityFigure 2: A typical activation function relating the weighted input to a unit and its output activity.denoted xi. The arrow on the right of the Figure depicts the ow of activity from the unit. Thearrows on the left depict the ow of activity from other units into the unit. The unit's activity is afunction of its inputs. In the Figure, there are n input lines. To compute its activity, the unit �rstcalculates a weighted sum of its input, called the net input,neti = nXj=1wijxj ;where wij is the weighting factor from unit j to unit i. The output of the unit is then a functionof the net input: xi = f(neti):This activation function is typically monotonic and restricts activity between some minimum andmaximum value. A common activation function isf(net) = 11 + e�net :As shown in Figure 2, this activation function maps a net input in the range of �1 ! +1 toactivities in the range 0! 1.If a particular weight, say wji, is zero, unit j will not inuence the activity of unit i; if theweight is positive, activity in unit j will tend to produce activity in unit i; and if the weight isnegative, activity in unit j will tend to suppress activity in unit i. Positive and negative weights aretherefore called excitatory and inhibitory connections, respectively. Learning in a neural networkinvolves modifying the connection weights which changes the response properties of units. We givean example of connectionist learning in a model we introduce below.Because it is often important to model the time course of activation, we can add a furtherconstraint to the activation dynamics that the rate at which information can ow from a unit islimited. This is achieved by de�ning the output of the unit as follows:xi(t+ 1) = �f(neti(t)) + (1� �)xi(t)where t is an index over time, assumed to be quantized into discrete steps, and � , in the range[0; 1], speci�es the rate of change. A � of 0.0 speci�es that the rate is in�nitely slow, while a � of1.0 speci�es that the output instantaneously reects the input state.
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Figure 3: (a) A feedforward architecture in which activity ows from the bottom layer of units tothe top layer; (b) A recurrent architecture in which activity ows in cycles.Connectionist units can be interconnected to form two basic architectures: feedforward andrecurrent. In a feedforward architecture (Figure 3a), activity ows in one direction, from inputunits to output units. The architecture shown in the �gure is also layered by virtue of the factthat units in one layer communicate only with units in the next layer. In a recurrent architecture(Figure 3b), units are connected in a chain such that activity ows out of a unit, through otherunits, and can eventually inuence activity in the unit itself.A basic model of object recognitionWe begin by introducing a general, relatively noncontroversial connectionist model of visual infor-mation processing and object recognition. It may strike experimental cognitive psychologists asunusual to propose a model without reference to speci�c data. However, the strategy we pursue isto �rst put forth a mechanism that is su�cient to perform the sort of information processing tasksthat we believe are essential to cognition. In the case of visual perception, this includes recognizingobjects and making judgements about visual stimuli. While the model embodies a basic theoreticalperspective on visual information processing, we will not attempt to model speci�c experimentaldata until the basic framework has been laid out. The point of the model is not to explain objectrecognition per se, but to motivate the need for attention and to study how attention interactswith object recognition. Later, we validate the model as psychologically plausible by showing thatit can account for experimental data.Before describing the model itself, we begin by explaining the input and output of the model.To present a visual stimulus to the model, a pattern of activity is imposed on the model's retina.The retina is a collection of feature maps. Each feature map is a topographic array of units thatdetect the presence of a particular visual feature in a particular location of the visual �eld. Theversion of the model we'll describe has an array of 15� 15 units in each feature map, and 5 featuremaps: oriented line segments at 0�, 45�, 90�, 135�, and line-segment terminators. We refer to theseinputs as primitive features.11The name \retina" should not be interpreted literally. The primitive feature representation is more like that found
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o o o o o o o o o o o o o o oFigure 4: The top left panel shows the set of primitive features that form four letters, A, C, D,and X. The small circles depict terminators. The remaining �ve panels show the activity in eachfeature map, with a dark symbol indicating that the corresponding feature unit is active, and alight symbol indicating that the feature unit is inactive.We use a simple font for uppercase letters in which each letter occupies a 3� 3 region of retina(Mozer, 1991). Figure 4 shows the pattern of activity that corresponds to four letters|A, C, D,and X|on the retina. The activity of a feature unit is represented by the shading of the symbol,dark for activity 1.0 or light for activity 0.0.In the version of the model we have implemented, the model's task is to recognize letters of thealphabet. There is one output unit for each letter. A unit should be active if its correspondingletter is present in any location on the retina.Figure 5 shows a sketch of the model. It is a hierarchical feedforward architecture in which eachlayer of units feeds to the next layer. The bottom layer in the Figure is the input, the top layeris the output. The basic idea of the architecture is to transform low-level, location-speci�c visualfeatures into high-level, location-invariant object identities. By \low level" or \high level," we meanthat the features respond to either simple or complex patterns, respectively; by \location speci�c"or \location invariant," we mean that the feature detector responds to stimuli only in a particularlocation on the retina or over the entire retina, respectively. The transformation from input tooutput is accomplished in several stages. At each stage, the number of feature maps increases, thefeatures respond to increasingly more complex patterns, and the region of the retina over whichthey respond increases. The logic of the architecture is that by increasing the number of featuremaps at each layer, information about spatial relations among features in the layer below can bein early visual cortical areas than on the human retina. Further, we do not even wish to claim that the coordinateframe of the primitive features is retinotopic. We have simply stated that the features are arranged topographically,but we have not speci�ed whether the feature maps are de�ned with respect to a coordinate frame that is retinotopic,head-centered, body-centered, or environmental. We avoid this di�cult issue because it is not critical to the discussionthat follows.
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Mozer & Sitton 6Table 1: Architecture of the recognition neural networknumber of receptive �eld receptive �eldlayer dimensions feature types size characteristics4c 1x1 26 2x24s 2x2 26 2x2 overlapping3c 3x3 20 2x2 nonoverlapping3s 6x6 20 2x2 overlapping2c 7x7 15 2x2 nonoverlapping2s 14x14 15 2x2 overlapping1 15x15 5encoded implicitly and hence the explicit representation of spatial relations (i.e., the dimensions ofthe feature maps) can be reduced.The details of the architecture, not too important for the rest of our presentation, are as follows.Units in a layer receive projections only from a local spatial region of the layer below. Neighboringunits in a layer receive projections from neighboring regions of the layer below. Table 1 summarizesthe architecture. The input layer, layer 1, has an array of 15�15 cells of 5 feature types. The outputlayer, layer 4c, has an array of 1�1 cells (i.e., there is no explicit representation of location) and 26feature types (the letters of the alphabet). Between the input and output are three transformationstages, each composed of a \simple" layer and a \complex" layer. The simple layer forms higher-order feature detectors by integrating information over space and feature types in the layer below,while the complex layer integrates only over space, resulting in a representation of the same featureswith lower spatial resolution. Thus, one will note that the number of feature types in the simplelayer is greater than in the layer below, while the number of feature types in the complex layer isthe same as in the simple layer. The terms \simple" and \complex" are a reference to cell types invisual cortex.The ideas embodied in this architecture are traditional. Barlow (1972) and Milner (1974) havedescribed hierarchies of feature detectors for vision. Fukushima and Miyake (1982), Sandon andUhr (1988; Uhr, 1987), Le Cun et al. (1989), Mozer (1991), and others have built hierarchicalconnectionist architectures for vision tasks. The idea of dividing each stage of the transformationinto simple and complex layers comes from Fukushima and Miyake and Le Cun et al.Training the modelWe have described the basic pattern of connectivity in the model|which units are connected towhich other units. The response of the model also depends on the strength of connections betweenunits, the network weights, which are found by a neural network training procedure. We sketch thetraining procedure but it is not essential to understanding the rest of the chapter.We �rst generate a set of training examples, each of which consists of an input pattern and atarget output. For instance, given the input pattern shown in Figure 4, the target would be anactivity level of one for output units corresponding toA, C, D, and X, and an activity level of zerofor all other output units. The training examples included displays of containing between one andfour letters, 104 examples of each display size. Letters in each example were selected at randomand always appeared in one of the four standard positions shown in Figure 4.The goal of the neural network training procedure is to �nd a set of weights that allow the
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Figure 5: The object recognition model. Each layer is a topographic array of processing units. Thebottom layer is the input, the top layer is the output. Activity ows from bottom to top. Eachcircle represents a collection of processing units that detect di�erent features. The connectivity inthe network is illustrated by shading a rectangular region in layer l and the location in layer l + 1into which this region feeds. Only a small fraction of the connections are depicted.
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Mozer & Sitton 8Table 2: Generalization performance of the recognition neural networknumber of letters miss rate false alarm rate2 10% 0%3 21% 1%4 37% 1%network to perform correctly on the training examples. That is, when any input pattern in thetraining set is presented, the network should produce an output pattern closely matching the cor-responding target output. This is achieved by a commonly used algorithm called back propagation(Rumelhart, Hinton, & Williams, 1986). This algorithm starts with random initial values for theweights and makes small incremental changes to the weights such that with each successive weightchange, the network produces outputs that better match the target outputs. In order for units ofthe same feature type in di�erent locations to repsond to the same pattern, their incoming weightsmust be identical. This is achieved by imposing weight constraints among the units, a commonapproach for visual object recognition networks (details can be found in Rumelhart, Hinton, &Williams, 1986).Performance of the modelFollowing training, we can present any single letter in any of the four standard positions and themodel will give a strong response to the appropriate letter (output) unit and a weak response to allother letter units. We can quantify the model's performance in terms of misses and false alarms.A miss occurs when the model fails to activate the output unit corresponding to a letter present inthe image above a threshold of .5; a false alarm occurs when the model activates the output unitcorresponding to a letter not present in the image above a threshold of .5. By these criteria, thetraining set of single letters produce a miss rate of 0% and a false alarm rate of 0%. When we testthe model on letters presented in novel positions, i.e., not one of the four standard positions, themodel shows a fair degree of generalization, achieving a miss rate of 30% and false alarm rate of5%. This is not surprising, as the local receptive �eld architecture and the constraints among theneural network weights favor, but do not strongly enforce, translation invariance.2Table 2 shows performance on test examples of double, triple, and quadruple letter displays.The test examples were formed by selecting random combinations of distinct letters and selectinga location randomly from among the four standard letter positions. Displays that were used intraining were excluded.Performance drops as the number of stimuli increases. One can understand why this must bethe case when one views the model in terms of processing channels. Information owing from oneletter position in the input to the output passes through a set of intermediate units. The unitsinvolved in the processing of one letter position overlap with those involved in the processing ofother letter positions, especially at higher layers of the model. The processing channels are thusdependent, and if information is owing from two channels simultaneously, interference can occur,resulting in the loss of information. Thus, while the model was designed to process visual stimuliin parallel, �nite resources result in capacity limitations. This motivates the need for some type ofattentional processing that can limit the amount of information that the model attempts to handle2Translation invariance means that the response of the system is the same regardless of the position of a visualstimulus on the retina.
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Mozer & Sitton 9at once. We now can present an attentional mechanism that performs this function.A model of attentional selectionWe have described a simple network that can recognize single letters well, and can recognize pairsof letters in parallel for the most part, but as the number of letters increases, the quality of therecognition degrades. On computational grounds, then, some means is required to select a subsetof the locations in the visual �eld where letters appear. By selecting locations sequentially, theattentional system can control the ow of information and prevent the recognition system frombeing overloaded.The attentional model we present is most similar to an early-selection model described byMozer (1991). However, there are many related models in the literature, including Ahmad (1991),Koch and Ullman (1985), LaBerge and Brown (1989), and Sandon (1990). We have attemptedto synthesize and incorporate the most promising features of each. The core of the model is aset of units arranged topographically, in one-to-one correspondence with retinal locations. Thisattentional map is depicted in Figure 6, along with the primitive feature maps. (Other details inthe Figure can be ignored for the time being.) In other models, the attentional map is also referredto as the priority map or the saliency map. Activity of a unit in the attentional map indicates thatunits in the corresponding location on the retina are being attended. Attending to a region of thevisual �eld requires activating a compact, contiguous set of units on the attentional map. For thetime being, we won't discuss how activity patterns arise in the attentional map. Assume that theactivity pattern has been established that indicates attention to a particular region. We will referto this activity pattern as the attentional state.How might attention control the ow of information in the visual system? The most straight-forward notion is to allow the attentional units to gate the activity ow from the primitive inputfeatures through the object recognition network. If an attentional unit is active, all primitivefeatures at the corresponding location transmit their activities to the recognition network. If anattentional unit is inactive, the activity of primitive features at the corresponding location is notavailable to the recognition network. This is consistent with experimental �ndings that once alocation is selected, all features at that location are processed (Kahneman & Henik, 1981). Thisgating operation is depicted in Figure 6 for two locations by a convergence of the output from anattention unit onto the bundle of outputs from the primitive features.A mathematical speci�cation of this gating operation is simple; it basically involves multiplyingthe activity of the attentional unit by the activity of the primitive feature units. Let axy denote theactivity of a unit at location (x; y) of the attentional map, and suppose this activity level rangesfrom a minimum of 0.0 to a maximum of 1.0. Let rqxy denote the activity of a primitive featuretype q at location (x; y) on the retina. Then the activity from this primitive feature unit that isconveyed to the recognition network, r̂qxy, isr̂qxy = axy(rqxy � �r) + �rwhere �r is the resting activity level of the primitive feature units. If the attentional unit hasactivity 0.0, only the resting activity is conveyed. As the attentional unit activity rises to 1.0,the activity conveyed approaches the actual primitive feature activity. This type of multiplicativejunction between processing units is common in connectionist models (see, e.g., Hinton, Rumelhart,& McClelland, 1986).
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Figure 6: Each \slab" of circles on the right depicts a primitive feature map, in which the circlesrepresent processing units that respond to a particular feature in a particular location. The slabon the left depicts the attentional map, with a set of units in one-to-one correspondence with theprimitive feature maps. Further details of the Figure are explained later in the chapter.Information in the unattended �eld seems not to be completely ignored in at least some situa-tions (e.g., Gatti & Egeth, 1978; Eriksen & Ho�man, 1973; Sha�er & LaBerge, 1979). This suggeststhat activity of the primitive feature units in unattended locations should not be completely sup-pressed, because if it was, unattended information could have no e�ect on behavior. We will thussuppose that unattended information is attenuated, using a gating function of the formr̂qxy = g(axy)(rqxy � �r) + �rwhere g(:) is a monotonic function, such asg(a) = �+ (1� �)a�:For the moment, ignore �. The constant � determines the degree to which unattended informationis passed through the recognition network. With � = :05, which we use throughout this chapter,5% of activity is conveyed even in unattended regions of the visual �eld. The consequence of anonzero � on behavior is not immediately obvious. The fact that 5% of activity is conveyed does notnecessarily imply that 5% of unattended objects will be recognized or that their activity will be 5%that of attended objects. This depends in a fundamental way on the operation of the recognitionnetwork, and might well interact with familiarity of the unattended stimuli (i.e., the extent towhich the recognition network is tuned to processing a particular stimulus) and the nature of taskdemands (e.g., the information on which responses are based).The constant � has been included to help suppress the e�ect of attentional units with weakactivity. If � > 1 and the attentional unit activities are in the range [0; 1], small activity values willbe squashed more than large activity values. Throughout the chapter, we use � = 4.
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Mozer & Sitton 11Having described how an attentional state a�ects processing in the recognition network, we nowspecify how the model forms attentional states.Dynamics of the attentional networkIn a model of location-based selection, the attentional state should indicate a contiguous spatialregion on the retina; attentional units within the region should be active and all others inactive. Itturns out to be somewhat tricky to design an elastic-spotlight model that permits regions of varyingsize and shape. However, we do not need to deal with this problem right now, because letters areof constant size and are always presented to the model in one of four positions. Consequently,we will describe a simpli�ed implementation that captures the essence of the model but, by itssimplicity, is easier to interpret and analyze. In this rigid-spotlight model, four attentional statessu�ce, corresponding to the four quadrants of the retina. To attend to a letter position, say theupper left corner of the retina, all attentional units in that quadrant should have activity 1.0 and allunits in the other three quadrants have activity 0.0. Because of the redundancy in this attentionalstate, we can collapse all attentional units in a quadrant to a single unit.The rigid-spotlight model requires just four units. What determines how active these unitswill be? There are two sources of input to the attentional network: exogenous and endogenous.Exogenous input comes from sensory data: in any quadrant where primitive features are present,attention should be directed to that quadrant. This will cause attention to shift to locations wherestimuli appear. Endogenous input results from previous learning, priming, or cueing which givesrise to expectations about the location of interesting sensory data. Both exogenous and endogenousinput directly activate the appropriate attentional units. In the case of exogenous input, one canthink of each primitive feature as having a small-weighted connection to the attentional unit in thecorresponding location. In the case of endogenous input, one can think of input from an unspeci�edsource to each attentional unit. This is depicted, for the elastic-spotlight model, in Figure 6.Because only one attentional unit should be active at a time|corresponding to the selection ofa particular location|the units should compete with one another. If each unit has an inhibitoryconnection to each other unit, the unit that is most active will inhibit all others. This is knownin the connectionist literature as a winner-take-all network (Feldman & Ballard, 1982; Grossberg,1976). Additionally, each unit should have an excitatory connection to itself, so that if it is active,it will tend toward the maximum activity level. Figure 7 shows a schematic depiction of theattentional model. Algebraicly, the net input to the attentional unit in location (x; y) at time t is:netxy(t) = extxy(t) + �axy(t)� � Xq;r 6=x;y aqr(t)and the activity update rule isaxy(t+ 1) = �h(netxy(t)) + (1� �)axy(t)where extxy(t) is the external input, endogenous and exogenous, to the attention unit, � is thestrength of the excitatory self-connection, � is the strength of the inhibitory connection betweenpairs of units, and h is a threshold linear function that limits activity to the range [0; 1]:h(net) = 8><>: 0 if net < 0net if 0 � net � 11 if net > 1
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Figure 7: The rigid-spotlight attentional model. Each attentional unit represents a quadrant ofthe retina. Each unit is self-excitatory and inhibits each other unit. Each unit receives inputfrom exogenous and endogenous sources. Excitation is represented by connections with arrows,inhibition by connections terminated with small circles.
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ityFigure 9: Build up of activity in an attentional unit (solid line) and the letter S unit (dashed line)in response to the stimulus S.Simulations of spatial selectionThe bene�t of attentional precuingWith the attentional network in place, we can run simulation experiments using the model. Initially,the model is reset to a neutral attentional state in which all attentional units are inactive. A stimulusis presented to the model by introducing a pattern of activity over the primitive features. Theprimitive features provide input to the attentional network, leading to activation of attentionalunits. At �rst, the inactive attentional network prevents most primitive feature activity fromentering the recognition network, but as the competition takes hold in the attentional network, onelocation becomes preferred and primitive feature units in this location are allowed to pass theiractivity through the recognition network. Figure 9 shows the response of the model when the letterS is presented in the upper left quadrant. The Figure depicts both the activity of the attentionalunit in the stimulus location and the activity of the letter unit. The time required to activate theletter unit is due to the gradual build up of activity in the attentional network as well as the slowpropagation of activity through the recognition network (as determined by the constant �).A simulation trial does not have to begin with a neutral attentional state. If the model has beencued to a location in advance of the trial, endogenous input to the attentional network will sustainactivation at that location in the attentional map prior to stimulus onset. When the stimulusis presented, activation from the primitive features will immediately ow through the recognitionnetwork. Consequently, one might expect more rapid response to the stimulus.Posner (1980) has studied a speeded detection task with location precuing. Subjects were askedto detect the onset of a suprathreshold target stimulus at one of several possible locations. Prior totarget onset, the subject might be provided with a spatial cue indicating the location in which thetarget is likely to appear. Subjects were faster to detect the target when a cue was given than whenno cue was given. Our description of the model's behavior is consistent with this result. Further,Posner manipulated the cue to be either a valid or invalid predictor of target location. Responses inthe valid cue condition were faster than in the neutral cue condition, while responses in the invalidcue condition were slower (second column of Table 3).33Most of the human data we use for comparison and for setting model parameters has been extracted from �guresof the referenced experimental papers, and/or has been averaged over several experiments. Because the details of oursimulation experiments do not match the details of the human experiments (e.g., stimuli, presentation conditions),
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Mozer & Sitton 14Table 3: Reaction time to detect target onsetcue condition human RT model cycles model RTvalid 230 ms 15.7 cycles 234 msneutral 260 ms 17.5 cycles 256 msinvalid 300 ms 20.9 cycles 301 msSimulating experimental results even as basic as these nonetheless requires further assumptionsabout the operation of the model.1. How do the di�erent cue conditions correspond to states of the model? We assume that in theneutral condition, all attentional units are inactive. A cue|valid or invalid|guides attentionendogenously to the cued location prior to presentation of the target.2. How does the model formulate a response? The detection response must be based on somerepresentation in the model; it could be the primitive input features, on the letter units, or onany level between. We assume that read out is based solely on the outputs of the recognitionnetwork.4 Because the detection response depends only on whether a stimulus is present, notits identity, we assume that the evidence upon which a response is based is the total activityof the letter units.3. When does the model initiate a response? One might assume a response is initiated whenthe total evidence passes some threshold. If there were no noise in the model, the thresholdcould be set to zero. However, our recognition model is noisy in that letter units have slightactivity even when no stimulus is present. Additionally, most models assume some built-innoise that reects sources of variability not modeled explicitly. Thus, the threshold shouldbe set as low as possible such that responses can be initiated rapidly and without producingfalse detections due to noise.The response generation procedure we adopted is a variant of the procedure used by McClel-land and Rumelhart (1981). We describe the general procedure. For each possible responser the model might be asked to make at time t, the evidence for the response, denoted er(t),is computed. The probability of producing a response r at time t is then:p(r; t) = exp(�er(t))Ps exp(�es(t)) ;where � is a constant that translates evidence into response strengths. The numerator is thestrength of response r, and the denominator normalizes the probabilities to sum to 1. Thisrule will always choose a response at each time t it is applied. However, we would like toprevent the model from making a response unless su�cient evidence has accumulated. To dothis, we add an additional response category, which we call \no response", that has constantevidence eNR. This constant behaves as a probabilistic threshold; if eNR is large relative tothe evidence for the other responses, then the model will likely hold o� making a response.eNR is a free parameter of the model, and it essentially controls the speed-accuracy trade o�:there is little to be gained by trying to determine and model the exact outcome of a speci�c human experiment.4It may seem strange to read out at a high level when the task does not call for stimulus identi�cation. We �ndit most parsimonious to make the strong assumption of a single level of read out, and thereby avoid the issue ofdetermining where read out occurs on a task-by-task basis.
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Figure 10: Summed letter unit activity as a function of model cycles for the valid (solid line),neutral (dashed line), and invalid (dotted line) cue conditions, averaged over a large number ofstimulus presentations. A cycle is a single update of the activities of all units in the model.the larger eNR is, the more evidence must accumulate before a response is initiated. In allour simulations, � = 10; in detection tasks, eNR = :3 and in discrimination tasks, eNR = 1:2,reecting the fact that more evidence should be required for a discrimination response thana detection response.Figure 10 shows the summed letter unit activity as a function of time for the three cue conditions.Time is measured in cycles; each cycle is a single update of the activities of all units in the model.One can clearly see that activity rises most rapidly in the valid cue condition, followed by theneutral cue condition, followed by the invalid cue condition. The third column of Table 3 showsthe mean number of cycles for the model to initiate a detection response, over a large number ofstimulus presentations. The simulation response times are qualitatively in accord with the data.We scaled the model response time in cycles, RTmodel to real-world response times, RT realworld,according to a formula that assumed a �xed number of milliseconds per cycle, , and a �xed amountof time, �, for input preprocessing and motor response:RT realworld = RTmodel + �;We chose values for these constants|12.8 for  and 32.8 for �|to obtain a reasonable �t to thisdata. The same constants will be used in all subsequent simulation experiments.5Cohen et al. (1994) and Jackson, Marrocco, & Posner (1994) have modeled the e�ect of cues onspeeded detection using essentially the same approach|a set of attentional units that compete toselect a location and preactivating units at the cued location. While the activation dynamics andcompetition mechanisms vary among the three models, and while Cohen et al. and Jackson et al.do not simulate the perceptual system in any detail, all three models show the same e�ect. Thissuggests that the e�ect is robust under a variety of implementations of the same key notion|thatattention is the result of a competition among locations. Jackson et al. have attempted to providea more neurobiologically plausible mechanism, localizing various components of their model todi�erent brain regions. Both Cohen et al. and Jackson et al. also account for data of neurologicalpatients with attentional disorders by \lesioning" their models in a manner consistent with theform of damage the patients are known to have su�ered.5Surprisingly, some modelers (e.g., Cohen et al., 1994) have allowed themselves the freedom of �tting the resultsof di�erent experiments with di�erent scaling parameters.
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Mozer & Sitton 16We attempted to extend our model in a somewhat di�erent direction. Shiu and Pashler (1994),summarizing the literature on the e�ect of advance knowledge of stimulus location in processingsingle-item displays, concluded that although a spatial precue results in signi�cant speedups indetection tasks, the e�ect is more modest in speeded suprathreshold discrimination tasks. Wesimulated a discrimination task in which the model was given a valid, neutral, or invalid cue, whichwas followed by one of two visually confusable targets, such asX andY, and a forced-choice speededresponse was required. For the discrimination task, a response cannot be initiated until the modelis con�dent that one stimulus was presented and not the other. This is particularly critical becausea stimulus like X will often produce activity for visually confusable letters like Y. Thus, we set theevidence for the X response, eX, to be the di�erence in activity between the X and Y units, andsymmetrically for the Y response.After experimenting with parameter values, activation functions, and response functions forover a week, we had to admit defeat: The model always produced a cue-validity e�ect in thediscrimination task which was as large as the e�ect in the detection task. Figure 10 suggests oneargument for why this might be. The curves for the three cue conditions appear identical exceptfor a shift in time. Although the Figure shows summed activity of all letter units, this is true forthe individual unit activity curves too. Any response initiation procedure based on these parallelcurves will necessarily produce response times for the cue conditions that di�er by the time shift.Thus, the detection cue-validity e�ect must be the same as the discrimination e�ect. Although itis theoretically possible that certain parameter settings might result in nonparallel curves, we wereunable to discover such settings.Two lessons might be learned from this exercise. First, the model shows a parameter-independent,qualitative behavior, indicating that it represents a strong, testable theoretical perspective. Largecomputational models often arouse suspicion because they appear su�ciently malleable that theycan be made to account for any piece of data. More often than not, this belief is misguided, aswe discuss later. Second, if one has strong con�dence in the model, one might question Shiu andPashler's conclusion from the literature, which is based on studies of Posner (1980) and Posner,Snyder, and Davidson (1980). Although both studies appear to show smaller cue-validity e�ects fordiscrimination than detection, this conclusion was not backed up by statistical analyses. Further,the detection and discrimination tasks were performed with di�erent stimulus materials and ex-perimental procedures, making it problematic to directly compare results. (Our simulation resultsassume that detection and discrimination tasks are carried out under identical stimulus and exper-imental conditions, except for the response required of subjects.) Resolving whether the model orthe characterization of the data is right is beyond the scope of this chapter, but the model|rightor wrong|has clearly pointed to an avenue of further investigation.Time course of attention shiftsIn the cue-validity simulation, we assumed that the cue was presented su�ciently far in advance ofthe target that attention could settle on the cued location prior to the target onset. What happensif the stimulus-onset asynchrony (SOA) between cue and target is varied so that the target ispresented before attention becomes fully active at the cued location? Experimental studies haveshown that response times decrease monotonically for increasing SOA, up to about 200 ms in bothdetection and discrimination tasks with peripheral cueing (e.g., Eriksen & Ho�man, 1974; Posner,1980).Figure 11 shows a simulation result for the model on a detection task in which a cue is presentedfor a varying number of cycles, and is then replaced by a target item to be detected. We assume
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eFigure 11: Response time of the model to detect a stimulus as a function of cue-target SOA. Thesimulation shows the same pattern as human performance: Response times decrease monotonicallyfor SOAs up to about 200 ms.that the cue initiates activity in the attentional network but not in the recognition network. Thesame detection procedure is applied as in the cue-validity simulations. Clearly, the model showsthe same pattern as human performance.E�ect of spatial uncertaintySpeeded response to a visual stimulus is delayed by the presence of irrelevant stimuli, even whensensory interference, discriminability di�culties, and response conict are ruled out as contributingfactors. In a study by Kahneman, Treisman, and Burkell (1983), observers were asked to readas rapidly as possible a word that appeared unpredictably above or below the �xation point. Onhalf the trials, another object was presented on the opposite side of �xation, either a word or aword-sized patch of randomly placed black dots. The mere presence of the second object resultedin a reading time delay of 30{40 msec.We simulated this experiment by presenting a letter in one of the four letter locations and a\black dot patch" in one of the other locations. We assume the black dots activate some unspeci�edprimitive visual features that drive attention to the location of the black dots, as do the otherprimitive features, but they do not activate the letter features used in the recognition network. Wealso assume that the letter features provide strong exogenous input to attention, causing attentionto eventually select the letter location.6Using the discrimination task, response time of the model was 568 ms in the condition with aletter alone and 605 ms in the condition with a letter and the black dot patch. The explanationfor this behavior is straightforward: When the dot patch competes with the letter for attention,the activity of the letter location in the attention network grows more slowly, causing a delay inpropagating information through the recognition network.6As we elaborate later, the model requires the ability to modulate the degree to which each primitive featuretype can drive attention; in this task, choosing the letter location is desirable, and hence letter features should driveattention more strongly than features of the black dots.
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Mozer & Sitton 18Table 4: Reaction time to targetdistractor type human data modelcompatible 460 ms 459 msneutral 500 ms 493 msincompatible 540 ms 546 msThe e�ect of irrelevant stimuliWhen subjects are asked to make a speeded response to a target letter in a known location, theirresponses can be inuenced by the identies of other letters nearby in the display (e.g., Eriksen &Eriksen, 1974; Eriksen & Ho�man, 1973; Eriksen & Schultz, 1979; Miller, 1991). Consider the taskof pressing one response key for the targetA or U, and another key for the targetH orM. Letterscan be presented anking the target which are either compatible with the target (i.e., selectedfrom the same response category), incompatible, or neutral (i.e., not belonging to either responsecategory). Responses are fastest on compatible trials and slowest on incompatible trials (Table 4).Flanker e�ects are signi�cantly reduced when the ankers are presented one degree of visual angleor more from the target, but this may well be due to reduced acuity at greater distances (Egeth,1977).The anker e�ect appears to be a failure of focal attention, in that subjects are unable to preventthe processing of letters adjacent to a target even if the target location is known in advance. Thise�ect can be eliminated under some conditions, however (LaBerge et al., 1991; Yantis & Johnston,1990).The model has a simple explanation for the anker e�ect. When a location is unattended,activity from that location is not completely suppressed; a small amount of activity stemming fromthat location|represented by the constant �|is transmitted to and analyzed by the object recog-nition network. This may result in letter activity that will strengthen the evidence for one responsecategory in the case of compatible ankers or weaken the evidence in the case of incompatibleankers.We performed a simulation study in which a target letter was presented in a fully attendedlocation, and two ankers appeared in adjacent unattended locations. A large number of trialswere run, varying the response sets and the stimulus locations. The response initiation procedurewas that of the discrimination task we modeled earlier. The results in the three anker conditionsare shown in Table 4. When unattended information is fully suppressed by setting � to zero, thee�ect vanishes.The model has now been shown to account for the results of four quite di�erent phenomenarelated to selective attention. Although the model produces excellent quantitative �ts to the humandata, the reader should recognize that there is a bit more going on behind the scenes than we havetold you about. For example, in the dot patch experiment, we had the freedom to manipulate thestrength of the exogenous input representing the dot patch, enabling us to produce an e�ect ofthe right magnitude. Nonetheless, it would be impossible to manipulate the model to alter thequalitative pattern of results, e.g., to cause the e�ect of attention to diminish as the cue-targetSOA increased. At the end of the chapter, we return to the issue of qualitative versus quantitativemodeling of data.
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Mozer & Sitton 19Attention as a spotlight?Spatial attention has been likened to a spotlight (e.g., Eriksen & Ho�man, 1973; Posner, 1980).This metaphor implies that attention is allocated to a contiguous, possibly convex, region of thevisual �eld. If the spotlight metaphor is appropriate, then the spotlight should have an adjustablediameter (Eriksen & Yeh, 1985; LaBerge, 1983). The rigid-spotlight attentional model simulatedin the previous section does indeed select a contiguous region, but the region is of �xed size andshape|an entire quadrant of the visual �eld. We now discuss an implementation of the elastic-spotlight attentional model, which is able to select regions varying in size and shape. In this model,the attentional map has the same dimensions as the retinal map, and a region of the visual �eld isattended by activating all attentional units in that region.The elastic-spotlight model is identical to the rigid-spotlight model, except that the dimensionsof the attentional map are increased and the computation of the \net input" to the attentional unitat map location (x; y), netxy, is changed tonetxy(t) = extxy(t) + � X(i;j)2nbhdxy aij(t)� �(�a(t)� axy(t)) ;where extxy(t) is the external input to the attentional unit, as before, nbhdxy is the set of ninelocations immediately adjacent to and including (x; y)|the neighbors, �a is the mean activity ofunits with nonzero activity, � and � are the same constants as before, and  is an additionalconstant.The �rst term encourages each unit's activity to be consistent with the external input, as before.The second term encourages each unit's activity to be as close as possible to that of its neighbors;if a unit is o� and the neighbors are on, the unit will tend to turn on, and vice versa. The thirdterm encourages units having activity below the mean to shut o�, and units above the mean toturn on. The constant  serves as a discounting factor: with  less than 1, units need not be quiteas active as the mean in order to be supported. Instead of using the average activity over all units,it is necessary to compute the average over the active units. Otherwise, the e�ect of the third termis to limit the total activity in the network, i.e., the number of units that can turn on at once. Thisis not suitable because we wish to allow large or small spotlights depending on the external input.To explain the activation function intuitively, consider the time course of activation. Initially,the activity of all units is reset to zero. Activation then feeds into each unit in proportion toits external input (�rst term in the activation function). Units with active neighbors will growthe fastest because of neighborhood support (second term). As activity progresses, high-supportneighborhoods will have activity above the mean; they will therefore be pushed even higher, whilelow-support neighborhoods will experience the opposite tendency (third term).This model has been used to explain data from neurological patients su�ering from attentionaldisorders (Mozer & Behrmann, 1990; Mozer, Halligan, & Marshall, 1996). We have adopted theparameter values from the earlier work: � was set to .11, � to .5, and  to .11 times the totalexternal input, with lower and upper limits of .75 and 1.0. A feature contributes external inputnot only to its corresponding attentional unit|as in the rigid-spotlight model, the contribution is� with probability �|but also to its neighboring locations with �neigh = :02�. The original intentof this blurring was to give the input a more continuous spread of activity.Figure 12 shows an example of the attentional model selecting a single region when the externalinput speci�es three blob-like patterns that represent distinct objects. The region chosen by the
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Figure 12: The upper left panel depicts the external input to the attentional model. The panelconsists of a 15 � 15 array of squares. The area of a white square corresponds to the amount ofexternal input to the corresponding unit of the attentional model. The small black dots are drawnin locations where the external input is zero, to show the extent of the array. The external inputpattern is meant to indicate three objects, the largest one|the one with the strongest externalinput|is in the upper left portion of the �eld. The next �ve panels show the activity as thenetwork settles. By cycle 20, the network has reached equilibrium and has selected the region ofthe largest object.
External Input Cycle 3 Cycle 6

Cycle 10 Cycle 15 Cycle 20

Figure 13: The response of the attentional model to an external input pattern in which there arethree objects, the largest of which is at the bottom and center of the �eld.
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Figure 14: The response of the attentional model when the � parameter is raised from 0.5 to 0.7.The external input is the same as in Figure 13, but the region selected is clearly smaller.model corresponds to the object with the strongest external input. Figure 13 shows a similarexample when one of the blobs is made larger, and a correspondingly larger region is selected.Comparing the two �gures, it is clear that the model can select regions of varying size. Modelparameters can also be adjusted to vary the size of its spotlight without changing the input.Figure 14 shows the response of the model when the � parameter is raised from 0.5 to 0.7. Theexternal input is the same as in Figure 13, but the region selected is clearly smaller.Two properties of the network are worth noting. First, the units on the edge of the spotlighttend to have less activity than the units in the center of the spotlight. One is tempted to relatethis to the claim that sensitivity falls o� gradually at the perimeter of the attended region (Eriksen& St. James, 1986; Downing & Pinker, 1985; LaBerge & Brown, 1989). Second, all stimuluslocations become active in the initial phase of processing. It isn't until competitive mechanismstake reign that a winning location emerges. Thus, the model is unfocused initially, but over thecourse of time it narrows in on a single object. Because the recognition network begins processingimmediately|and before the attentional network has settled to equilibrium|it initially tries tohandle all information in the �eld simultaneously. If one were to observe the activity of units inthe recognition network, it would appear as if the units responded to unattended stimuli at �rst,but this activity was eventually suppressed. In single cell studies of monkey visual cortex, thisbehavior has been observed: 60 msec after stimulus onset a response is triggered in the extrastriatecortex, but not until 90 msec does attention kick in and suppress unattended stimuli (Desimone &Duncan, 1995).The model was not designed with these data in mind, but it does appear a natural consequenceof such a �ltering mechanism. One can envision two basic designs: (1) a cautious system thatdoes not allow the processing of any information until selection is complete; and (2) an audacioussystem that allows the processing of all information until selection is complete. The audacioussystem will respond more rapidly, but is more prone to error because items in the visual �eld mayinterfere with one another when attention is unfocused. The model, and apparently the primate
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Figure 15: The response of the attentional model when it is already attending somewhere and theexternal input changes, triggering an attention shift. The external input (upper-left panel) appearsat cycle 0, when the model is in the state depicted in the upper-middle panel. The remaining panelsshow the shift of attention from the upper-left corner of the �eld to the lower-right corner.brain, is audacious. This is a sensible strategy if the cost of slow responses is greater than the costof occasional errors.In the simulations above, the initial state of the model was neutral. Essentially, the model wasattending nowhere, then a multi-item display appeared which initiated a competition among thestimuli for attention. What if the model is already attending somewhere when the display appears,requiring a shift of attention from one location to another? Figure 15 illustrates this situation.Attention fades out from the old location and in to the new. The spotlight metaphor does notseem appropriate for describing the attention shift. If the focus of attention were like a spotlight,one would expect attention to move across the �eld in an analog fashion, illuminating interveningpoints along the way. One would also expect that the time required to shift attention would bemonotonically related to the distance between foci. The model does not show this behavior either:The time required for attention to shift from a focus at (2,2) to stabilize on a focus at (12,12) is 32cycles (Figure 15). The time required for a shift half as far|from (2,2) to (7,7)|is also 32 cycles.Early evidence in the literature did appear to support an analog view of attentional shifts(Shulman, Remington, & McLean, 1979; Tsal, 1983). However, several critiques have appearedof this interpretation of the original data (Eriksen, 1990; Yantis, 1988) and recent experimentssuggest that the time to shift attention is independent of the distance traversed and of the presenceof interposed visual obstacles (Sperling & Weichselgartner, 1995). The current consensus is thatthe spotlight of attention turns o� at one location and then on at another (Eriksen, 1990; Kinchla,1992). Thus, our attentional model, which was not designed to behave this way, appears to capturethe key property that attention shifts are discrete and distance independent.
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Mozer & Sitton 23Modeling various selection criteriaWe have described several simulations in which the model selects items for report based on location.Other tasks require selection by di�erent properties of the stimulus, for example, reporting theidentity of the red letter or the location of the brightest dot. An important aspect of a computationalmodel is that, beyond explaining data, it can also carry out the same sort of operations as canpeople. Thus, in this section, we endow our model with a mechanism that allows it to performselection by simple physical attributes such as color or brightness. The mechanism assumes thatselection by attributes other than location is nonetheless mediated by location selection, consistentwith �ndings of Snyder (1972), Nissen (1985), and Tsal and Lavie (1985). The mechanism is basedon models by Mozer (1991) and Wolfe, Cave, and Franzel (1989).Earlier, we characterized the input to the model in terms of primitive feature maps. Each mapis a spatiotopic array of detectors tuned to a particular feature. Until now, we have only requiredfeatures of letters|oriented line segments and line terminators|but suppose that the primitivefeature maps include other dimensions of the stimulus, such as color and brightness.To perform selection by arbitrary features, the model needs the ability to specify which ofthe feature maps provide exogenous input to the attentional network. This is achieved through aset of control signals, one per feature map, as shown in Figure 6. The control signals modulatethe probability that features in that feature map are detected by the corresponding unit in theattentional map. We referred to this probability earlier as �, but we now add the index q toindicate the control signal for feature type q, �q. By default, the �q will have value .8, as weassumed for �. The control signals in Figure 6 are shown only for a single location, but the gatingis performed at every location across the spatiotopic map.If the task requires selecting the red item for report, then the system should be con�gured suchthat only activity from the \red" feature map drives the attentional network, causing selection ofred items. If the display contains only a single red item, it will be selected, activity from all featuretypes in its spatial location will then be allowed to pass through the recognition network, and theoutput of the recognition network will be the identity of the red item.What are the primitive feature dimensions that can drive attention? In addition to edge ori-entation and termination, color, and brightness, there is evidence to support dimensions such assize, direction and speed of motion, binocular disparity, and three-dimensional surface properties(Driver, Mcleod, & Dienes, 1992; Enns, 1990; Hillstrom & Yantis, 1994). Discontinuities or sin-gletons in all of these dimensions appear capable of attracting attention as well (Pashler, 1988;Sandon, 1990; also, see chapter by Yantis, this volume). And multiple spatial scales of resolutionmust be encoded.7 By this reckoning, there are at least �fteen primitive feature dimensions, andto coarse code a value on each dimension (e.g., to specify the value \red" on the color spectrum)would require a bare minimum of, say, �ve feature types, resulting in at least 75 primitive featuretypes.Having argued for voluntarily control over which features can drive attention, we must addthat this control is certainly limited. Some visual features may attract attention willy nilly (e.g.,Jonides & Yantis, 1988; Pashler, 1988; Treisman & Gormican, 1988), indicating that it is di�cult orimpossible to gate out these features. And, based on evidence we discuss below, there are probablybounds on the visual system's ability to gate in or out various feature types.7Our framework makes no strong assumptions about the nature of the primitive visual features. Many featureswe have listed would not ordinarily be considered \primitive." The framework allows for considerable preattentiveparallel visual processing prior to \feature" registration.
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Mozer & Sitton 24In terms of the model, we propose a simple limitation on control over which features can driveattention. Let us allow the control signal, �q, for each feature type q to be continuous in the range[0; 1]. The control signal then determines the degree to which a feature type will attract attention.Suppose that each �q has a default setting which has been determined by past experience, based onwhat features in the environment tend to be most important and need to be responded to quickly.Modulating the value of a �q requires some type of limited resource, let us call it regulatory juice.The amount of juice is su�cient to, say, fully open or close one gate, or to make small adjustmentsin several gates. It may even be that some gates are easier to modulate with a �xed quantity ofjuice. The point is that the �q cannot be adjusted arbitrarily.The introduction of control signals into the model allows us to explain selection on the basisof primitive features other than location. The notion of regulatory juice allows us to explain howselection criteria are adjusted in response to task demands. Experimental data are consistent withthis notion, e.g., short-term experience performing a task can a�ect the degree to which certainfeature types drive attention, and this e�ect can be either excitatory or inhibitory, i.e., increasing ordecreasing the �q (Hillstrom, 1995; Maljkovic & Nakayama, 1994). Treating the regulatory juice asa limited resource allows us to account for limitations on attentional selectivity. The general issueof voluntary control over exogenous inuences on attention is beyond the scope of this chapter,although we �nd it di�cult to build a computational model without at least specifying the \hooks"for such control from unspeci�ed higher cognitive processes.The relationship of object-based and location-based attentionStudies have shown that attention can select stimuli on the basis of object shape or structure(e.g., Behrmann, Zemel, & Mozer, 1996; Duncan, 1984; Egly, Driver, & Rafal, 1994; Kramer &Jacobson, 1991; Vecera & Farah, 1994). For example, Kramer and Jacobson examined the inuenceof ankers on a target stimulus, similar to the experiments described earlier. When the ankersand the target were considered part of the same object, there was a response-compatibility e�ect;when the ankers and target were part of di�erent objects, there was no e�ect, even though thespatial separation between the target and ankers was the same in the two conditions.The data argue for object-based selection: Visual features are attended to not on the basisof their spatial location but according to which object they belong, even if the features are notspatially compact and overlap with features of other objects. Two very di�erent processes couldunderlie object-based attention. One possibility is that attention is allocated to an object-basedrepresentation, perhaps a high level, abstract representation of object identity. The other possibilityis that attention is allocated to a set of spatial locations, possibly noncontiguous, at which featuresof an object are present. Evidence from Vecera (1994) supports the latter interpretation.What is the relationship between object-based and location-based attention? Both forms ofattention can be observed in the same experiment (Egly, Driver, & Rafal, 1994), suggesting thatthe two are not mutually exclusive. Consequently, one must ask which type of attentional selectionoperates �rst, or whether there is an interactive process in which both types of selection occurin parallel. Experimental work like that of Kramer and Jacobsen (1991) argues that object-basedsegmentation must precede or interact with location-based selection. Assuming that object-basedsegmentation is related to perceptual processes that group distinct display elements into coherentregions, additional support for this hypothesis can be found (Driver & Baylis, 1989; Duncan, 1995),and there are several recent theoretical proposals that embody the hypothesis (Grossberg, Mingolla,& Ross, 1994; Humphreys & M�uller, 1993; Rensink & Enns, 1995; Trick & Pylyshyn, 1994).
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Mozer & Sitton 25Given that object-based selection involves allocating attention to spatial arrays of features, andthat object-based selection operates prior to or simultaneously with location-based selection, themechanism of attentional gating we have already proposed is adequate to explain object-basedselection. We must, however, posit an additional process that segments features of a displayaccording to which object they belong and can guide attention to the locations of a single object'sfeatures.Several computational models have been proposed to segment displays into their componentobjects. Humphreys and M�uller (1993) and Grossberg, Mingolla, and Ross (1994) have builtconnectionist models that group display elements on the basis of similarity and spatial proximity.Mozer, Zemel, Behrmann, and Williams (1992) have designed a connectionist model that learnswhich features are likely to be grouped together or apart based on a set of presegmented examples.It thus extends the notion from Gestalt psychology of �xed grouping principles to a more dynamicprocess based on statistics of the environment. (Figure 16 shows the model segmenting a simpleimage.) Both types of models use heuristics to guide the grouping process, rather than whole-objectknowledge. Although the heuristics will not be infallable, the hope is that they will su�ce for mostsegmentation tasks, and even when they fail, recognition processes will be robust to some degreeof segmentation error (Enns & Rensink, 1992). This avoids the chicken-and-egg problems of howto segment a display without knowing the component objects, and how to recognize the objectswithout knowing the segmentation.8Assuming some process has segmented the visual �eld into feature groups, how do the groupsinuence attention? Here is one proposal in terms of our model. The attentional model selectsa single region|a contiguous set of locations|because each unit in the attentional map inhibitsall units outside its neighborhood. However, for object-based attention, the possibility of selectingnoncontiguous locations must be allowed. Thus, units representing locations of features of thesame group should excite rather than inhibit one another. The result of grouping processes, then,should be to increase temporarily the connection strengths between attentional units that representgrouped locations. The notion of dynamic, short-term weight adjustments in response to groupedfeatures was proposed by von der Malsburg (1981; von der Malsburg & Schneider, 1986).The eventual attentional state will then be a complex interaction between the dynamic linksformed among grouped features and exogenous and endogenous inputs to the attentional network.This brief sketch is hardly a compelling answer to the di�cult and important question about howobject-based and location-based attention work together. Existing computational models do notdirectly address how the two forms of attention are integrated, with the exception of preliminarywork by Goebel (1993) and Grossberg, Mingolla, and Ross (1994). This is clearly fertile ground forfuture exploration and simulation.8All segmentation models use some information about objects. The information can be as basic as the fact that twofeatures appearing in a certain spatial relation are more often part of the same object than parts of di�erent objects.The information can be as complex as restrictions on how a feature can appear with respect to all the other featuresthat are part of the object, which we have referred to as whole-object knowledge. One can characterize the informationalong a continuum of what order statistics comprise the knowledge. Second-order statistics describe relationshipsbetween pairs of features; very high-order statistics are required to describe whole objects. The information used bythe Mozer et al. (1992) model is of intermediate order, based on spatially local con�gurations of features. Vecera andFarah (1993) found that upright overlapping block letters are segmented more readily than the same stimuli inverted.This experiment rules out the use of only low-order statistics, such as continuity between pairs of lines, becauseupright and inverted letters are identical in terms of low-order statistics. While the use of whole-object knowledge forsegmentation could explain the experimental results, the results are also consistent with the use of intermediate-orderstatistics that are di�erent for upright and inverted letters. For example, English letters are more often open on theright than on the left. Inverted letters violate this con�gural property.
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Cycle 0Cycle 0 Cycle 2Cycle 2 Cycle 4Cycle 4

Cycle 6Cycle 6 Cycle 10Cycle 10 Cycle 25Cycle 25Figure 16: The adaptive grouping model of Mozer et al. (1992). The six panels show the stateof the model at various points in processing a display consisting of two overlapping rectangles.The upper left panel is the initial state of the model; the lower right panel is the �nal output ofthe model. Each oriented line segment is a primitive input feature. The coloring of the featuresindicates the object label assigned to the features. The initially random labeling is transformedinto a pattern in which the features of each rectangle have a unique label.
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Mozer & Sitton 27Simulations of visual searchIn the previous three sections, we have discussed diverse aspects of attention: adjustable attentionalspotlights, shifts of attention, selection on the basis of object attributes, and the relationship oflocation-based and object-based attention. All of these aspects must be addressed if we hope tomodel the vast and complex literature on visual search.In a visual search task, subjects are commonly asked to detect the presence or absence of atarget in a display containing distractor elements. Response time is measured as a function of thenumber of elements in the display. The shape of this curve indicates something about how subjectsperform the search task. Flat curves, in which response time does not increase with the number ofelements or increases very gradually (less than about 10 milliseconds per element), is suggestive ofa parallel search across the visual �eld. Curves with steep slopes, in which each additional elementincreases the response time, are suggestive of a serial search. For example, searching for a verticalbar among horizontal bar distractors produces a at curve; searching for a plus among verticaland horizontal bar distractors produces a positively sloped curve. Characterizing search using aserial-parallel dichotomy has turned out to be an oversimpli�cation (see Chapter by Wolfe, thisvolume). Response time curves are often nonlinear, and slopes vary across tasks continuously, fromat to steep. It is thus more appropriate to view search on an easy-to-hard continuum.A variety of promising computational models have been devised to replicate various aspectsof the data (Ahmad, 1991; Ahmad & Omohundro, 1991; Gerrissen, 1991; Grossberg, Mingolla,& Ross, 1994; Humphreys & M�uller, 1993; Mozer, 1991; Niebur & Koch, 1996; Sandon, 1990).Most of these models are based on feature-integration theory (Treisman & Gelade, 1980; Treisman& Gormican, 1988; Treisman & Sato, 1990) or the guided-search model (Wolfe, Cave, & Franzel,1989). We will discuss the processes and mechanisms underlying visual search in terms of the modelwe have developed for this chapter, but our account overlaps signi�cantly with these theories andearlier computational models. An outline of this account is as follows.� We assume that the target and distractor sets are known in advance. For each primitivefeature type, an analysis must be performed to determine how well the feature discriminatestargets from distractors. That is, if all display elements containing (or not containing) thefeature are discarded, have we done a good job in eliminating distractors and keeping targets?Consider, for example, searching for a red vertical among blue verticals and blue horizontals.If all red elements are ruled in (or equivalently, all blue elements are ruled out), the targethas been reliably separated from the distractors. However, if all verticals are ruled in (orhorizontals are ruled out), we are left with a set of elements that includes both targets anddistractors.9� The control signals, �q, of highly discriminative feature types should be modulated such thatpotential target elements will be more likely to capture attention and potential distractorelements will be less likely. In our example of searching for a red vertical among blue verticalsand horizontals, �red should be increased, causing red elements to drive attention more thanblue elements. The modulation of control signals might be subject to a limited amount ofregulatory juice. The model also has the exibility to adjust other parameters that inuenceits performance, including the diameter of the attentional spotlight, controlled by �, and the9Judging the discriminative power of a feature requires additional assumptions about the nature of the stimulusdisplays, such as the relative likelihood of various distractors and the relative frequency of target-present trials.
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Mozer & Sitton 28response criterion, controlled by eNR.10� When a search display is presented, features in the display will drive the attentional networkexogenously, gated by the control signals.� A competition ensues within the attentional network to select one region. The region maycontain one or multiple display elements. The size of the region will depend on the density andarrangement of elements, segmentation and grouping processes, and the adjustable parameterof the attentional network that controls the spotlight diameter.� As selection takes place, display elements are processed and identi�ed by the recognitionnetwork. Even display elements that are commonly thought of as simple features, such as avertical bar, are processed by the recognition network. The vertical bar is an object whichmight be composed of vertical bar and terminator primitive features.� The output layer of the recognition network contains a set of units that represent identitiesof the di�erent display elements that might appear. Target detection would occur using theresponse initiation procedure of earlier simulations.� If the target has not been detected by the time that the outputs of the recognition networkhave stabilized, the selected region is deemed not to contain a target, and attention should beprevented from returning there. This can be accomplished by forcing o� the currently activeattentional units, possibly by assigning them a strong negative bias that gradually decaysback to zero, and resetting the recognition system.11 12� The attentional state is reset, and this process is repeated until all stimulus locations in thedisplay have been explored, at which point the model reports \target absent." It is possiblethat the model could quit after only one or a small number of attentional �xations, or, at theother extreme, that it could return to locations to verify the absence of a target.This is a complicated, ill-speci�ed story, but visual search is a complicated, ill-speci�ed task|illspeci�ed in the sense that subjects must make a variety of strategic and control decisions that arenot part of the task instructions. To simplify our simulation, we will model search in relativelysmall displays, of up to nine elements. This allows us to avoid limitations on peripheral visualacuity, eye movements, and|as we will show|the need for sequential attentional �xations. Wealso neglect target-absent data, because modeling performance on these displays requires additionalmechanisms which, e.g., determine when to switch attention, when to quit searching, and how tosuppress locations such that they are not repeatedly searched.10It is a di�cult optimization problem to con�gure the model's parameters so as to minimize errors or responsetime, especially under the constraint of a �nite amount of regulatory juice. Fine tuning the system parameters is nodoubt a matter of learning and experience.11A bias is a tonic input to a unit. A negative bias causes the unit to shut o� unless there is overwhelming positiveinput to the unit via excitatory connections from other units.12Although we have not speci�ed the coordinate frame in which the attentional units operate, it seems most naturalto interpret it as retinotopic. There is evidence, however, that inhibition of return, the likely mechanism for preventingthe human visual system from returning to an already searched location, operates in a coordinate frame that doesnot depend on eye position (Posner & Cohen, 1984).
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oFigure 17: A pattern of activity that corresponds to �ve bars and a plus in random locations onthe model's retina.Simulation methodologyFor these simulations, we trained a version of the recognition model that recognizes three \objects":a vertical bar, a horizontal bar, and a plus sign. The objects can appear in any of nine locationsin the �eld. Figure 17 shows a sample display. Note the distinction between vertical-bar objectsand vertical-bar features; the former is composed of the latter. The network was trained on 450example displays of one to nine elements, similar to those used in the visual search simulationsdescribed below. The training set was unbiased in that it contained equal numbers of examplesfrom each condition in the visual search simulations.During testing, displays are presented to the model with a target and a variable number ofdistractors. The elements are arranged randomly on the model's retina. The elastic-spotlightattentional network, guided by control signals, selects a subset of the display elements, and therecognition network reports the identities of the selected elements. Although we imagine thatdetection responses are trigged by the response initiation process described earlier, we took a shortcut which is a deterministic approximation to the stochastic process, and simply used a �xed activitythreshold, generally around .5, as the all-or-none threshold for initiating a response. If a responsehas not been initiated within 100 cycles, the model reports \target absent" and is considered tohave made an error.13 The threshold we selected was as low as possible, to produce responses asfast as possible, such that the rate of false detection in target-absent displays was nearly zero.Simple feature searchSearching for an element with a distinctive feature is easy. In a display containing a single verticaltarget among a variable number of horizontal distractors, response time will be independent of thenumber of distractors. Our model can explain this �nding by assuming that the control signal forthe distinctive feature is increased, causing attention to be driven directly to the location of thedistinctive feature. Once that location is attended, the object at that location is recognized and aresponse is made.We have simulated the search for a vertical among horizontals and a horizontal among verticals.On each simulation trial, the control signal for the primitive feature unique to the target is increasedfrom .8 to 1.0, and the control signal for the primitive feature unique to the distractor is decreasedfrom .8 to 0.13The processing involved in deciding the target is absent is undoubtably more complex than this. Indeed, Chunand Wolfe (in press) suggests that absent responses are unlikely to be triggered by a �xed passage of time.
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Figure 18: Time for the model to initiate a detection response as a function of display size fortarget-present trials in feature (dashed line) and conjunction (solid line) search.The dashed curve in Figure 18 shows the model's performance on target-present trials as afunction of the number of display elements. Response times are not dependent on display size. Themodel never fails to detect the target.Theories of visual search generally assume that feature search does not require selective atten-tion, and more strongly, that feature search does not bene�t from selective attention. We testedwhether this assumption is consistent with our model by forcing attention to be distributed acrossthe visual �eld. This is achieved by setting � = 1, which causes all perceptual data to be fullyanalyzed by the recognition network, regardless of the attentional state. One might conjecture thatif simple feature displays can be processed in parallel and if there is a bene�t of allocating attentionprior to stimulus onset, as we observed in the cue-validity e�ect, response times might actually befaster with distributed attention. Indeed, there is a statistically reliable bene�t for small displays,replicating the cue-validity e�ect, but there is also a statistically reliable cost for large displays.Cost and bene�t are both on the order of 30 ms, and over the various display sizes, they tend tocancel. Thus, the attentional network is not really helping processing for simple feature displays,nor is it hurting, consistent with the traditional view of feature search.The model o�ers a nontraditional perspective in two other respects, however. First, simplefeature search is viewed as an object recognition task, albeit one which the recognition systemhas capacity to perform in parallel. Second, while the guided-search model and feature-integrationtheory consider the role of attentional guidance only in conjunction search, modulation of controlsignals is critical in our model in feature search. Because the attentional network always acts toselect display elements, it is necessary to modulate control signals to select the target features orelse the target will be suppressed and may not be detected. It would be a challenge to develop anexperimental test that could distinguish this perspective from the traditional view.
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Mozer & Sitton 31Conjunction searchSubjects are slow to search for an element de�ned by a conjunction of features, such as a red verticaltarget among red horizontal and blue and red vertical distractors. An explanation in terms of ourmodel for the di�culty of conjunction search is not obvious. Suppose that control signals wereset such that exogenous input from only the red and vertical feature maps was able to reach theattentional network. Locations of red elements would receive a certain amount of input, locationsof vertical elements would receive roughly same input, but the locations of red vertical elementswould receive twice as much input. The attentional network should reliably select the location ofthe target, independent of the number of distractors. Regardless of recognition and veri�cationprocesses, one would expect the response curve to be at, in contrast to typical human data.Thus, it might seem that our model is too powerful, even though there appear to be at least someconjunction searches that are easy (e.g., color/depth and motion/depth, Nakayama & Silverman,1986).One account of the di�culty of conjunction search, suggested by the guided-search model (Wolfeet al., 1989) is to postulate that recognition and attention operate in an intrinsically noisy envi-ronment. Although the attentional system should be directed more strongly to the target locationthan to the distractor locations, the strength of the direction may not be su�cient to overcomenoise, and will therefore not be reliable, and serial search will be required. A second way account ofthe di�culty of conjunction search is to postulate limits on the voluntary adjustment of the controlsignals|the regulatory juice. These two accounts are complementary; weak limits on regulatoryjuice and a high intrinsic noise level should yield performance similar to that with strong limitson regulatory juice and a low intrinsic noise level. In simulating our model, we discovered that itprovides a somewhat di�erent account altogether, which we detail below.In the canonical conjunction search task, the target is composed of features on two di�erentdimensions. We could simulate this experiment by adding red and blue feature types to the modeland then training a net to recognize red and blue verticals and horizontals. We could then usethe control signals to bias attention toward the red and vertical feature maps, if the target was ared vertical. Instead, we have chosen to simulate an experiment which is more challenging to themodel. Our simulation experiment involves a target plus symbol embedded in a distractor arrayof verticals and horizontals. Even without modulating the default values of the control signals, theexogenous input to the target location should be twice that of the exogenous input to any of thedistractors because the target is composed of twice as many features.14 It would thus seem thatselection should be strongly biased toward the location of the target|a problematic result for themodel.With trepidation, we ran the conjunction search simulation. To our surprise, the model'sperformance nicely matched the human data, as shown by the solid curve in Figure 18.15 As thenumber of display elements increases, response times increase. For small displays, the curve isat. This is in accord with the �nding of Pashler (1987) that nearly at search slopes can beobserved for small displays, and it reects the fact that the recognition network is able to detectconjunctions in parallel, albeit with limited capacity. (Mordko�, Yantis, and Egeth, 1990, presentfurther experimental evidence of limited-capacity parallel conjunction detection.)Response times increase with display size for two reasons. First, the competition among elements14The guidance to the target is the same as it would be in the colored bar experiment if the control signals wereset up to allow only target features to guide attention, i.e., assuming no limit on the regulatory juice.15By experimentation, we found that the model performed best when the control signals for all feature types werelowered from .8 to .5 and when � was lowered from .10 to .04, creating a narrower focus of attention.
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Figure 19: Error rate of the model on target-present trials for conjunction search as a functionof display size. The solid line represents the condition in which the attentional network performsselective attention. The dotted line represents the condition in which attention is distributed acrossthe �eld, i.e., all perceptual data enters the recognition network.in the attention network increases. This can be shown by observing how long the attentionalnetwork requires to reach a stable state. Second, unattended elements in the display interferewith recognition. This can be shown by comparing performance of the network with � = 0, i.e.,unattended information fully suppressed, to the standard model, which has � = :05. We �nd thatresponse times are statistically slower with unattended information fully suppressed, 39 ms slowerin the case of nine-element displays.As we did with feature search, we can examine how important selective attention is for con-junction search. Here, we �nd a very di�erent pattern. Figure 19 shows that the model's error rateskyrockets when attention is divided across display elements. No setting of the response thresholdcan achieve a low error rate over both target present and absent trials. The model cannot reliablydetect the plus target without selective attention, consistent with the traditional theories of visualsearch.However, our account of conjunction search is in part nontraditional, because it depends onsubtle properties of the model|the inuence of unattended elements on the detection of attendedelements and the dynamics of the attentional model. Simulation studies were critical to discov-ering that the model behaved correctly and why it did. Although the current simulation did notrequire postulating noise in the attentional system or limitations on regulatory juice, these factorsmay contribute to conjunction search performance, and may be necessary in simulations of otherexperimental �ndings.Discussion of visual searchIn its present form, the model can explain other data relating to visual search, including the�ndings of faster search in low-density displays (Cohen & Ivry, 1991) and the di�culty of detecting
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Mozer & Sitton 33the absence of features (Treisman & Souther, 1985). With minor extensions to the model, a widevariety of other data can be addressed, including response-time curves for target-absent displays,e�ects of target-distractor contrast (Treisman & Gormican, 1988), search asymmetries (Ivry &Cohn, 1992; Treisman & Gormican, 1988), e�ects of distractor homogeneity (Duncan & Humphreys,1989), and rapid conjunction search (Wolfe et al., 1989). However, our immediate goal is not topresent a comprehensive model of visual search, but rather to begin considering the underlyingmechanisms. By addressing data from experimental paradigms as disparate as spatial cueing andvisual search, we hope to have convinced the reader of the model's breadth and exibility. This isthe remarkable property of computational models|they can help one to integrate phenomena undera uni�ed framework. The other lesson from these simulations of visual search is that, although themodel shows some behavior that one would intuitively expect, other aspects of its behavior werefound only via simulation. The model raises some intriguing possibilities, and addressing thesepossibilities requires further human experimental studies.The role of selective attentionWhen one adopts a computational perspective, a natural question to ask is what computationalrole selective attention plays in visual information processing. Four distinct functional roles ofattention fall naturally from the computational perspective presented in this chapter.� Controlling order of readout. The attentional system allows the recognition system to selec-tively access information in the visual �eld by location. A task requiring sequential responsesto items in various locations could not be carried out with the recognition system alone.� Reducing crosstalk. As we illustrated earlier, when the recognition network analyzes multipleitems in parallel, interactions within the network cause the processing of one item to interferewith another. Deploying attention to one or a small number of items at once will reduce oreliminate crosstalk.� Recovering location information. The output of the recognition system we developed encodesidentities but not locations. Computationally, it makes sense to separate identity from lo-cation, because often the same response should be made to a stimulus regardless of whereit appears in the visual �eld. Neurophysiological evidence also suggests that, at least in theresponses of individual cells, a great deal of location information is discarded in higher corticalareas involved in object recognition (Tanaka, 1993). And some psychological data suggeststhat stimulus identity is encoded apart from location (Mozer, 1989; Kanwisher, 1990). Thus,some means of recovering location information is critical. Because the current locus of atten-tion reects the spatial source of activations in the object recognition system, the attentionalsystem can convey the discarded location information.� Coordinating processing performed by independent modules. The heart of feature-integrationtheory is the notion that visual stimuli are analyzed by functionally independent modulesspecialized along certain attribute dimensions such as color, form, and motion. Becausethese modules operate autonomously, it is imperative to ensure that they coordinate theirprocessing e�orts. Otherwise, the system can encounter a binding problem in which attributesof multiple objects are simultaneously activated and it cannot be determined which attributesbelong together, possibly resulting in illusory conjunctions (Treisman & Schmidt, 1982). By
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Mozer & Sitton 34guiding all modules to analyze the same spatial region, attention can ensure that the attributesof a single object will be bound together.16Contrasting theoretical perspectives on selective attentionThe key properties of our model are common to most theories of selective attention. We summarizethese properties, which collectively we call the spatial-selection perspective, as follows.� Attention operates as a spatial gating mechanism. This is mandatory to perform selection bylocation.� The mechanism includes a representation of visual �eld location|the attentional map|whichis distinct from the representation of visual features used for object recognition.� Attention acts to modulate the activity of visual features such that the signal strength offeatures at attended locations are enhanced relative to the strength of features at unattendedlocations.� Object recognition is limited in capacity. While there may be some capacity to recognizeobjects in parallel, interference among objects arises which necessitates attentional selectionearly in the processing stream. Although selection is performed early, unattended informationreceives some degree of processing and causes some interference with attended information.� Selection can be performed on the basis of object attributes, if these attributes can be char-acterized in terms of combinations of primitive features that discriminate the item of interestfrom other items in the visual �eld.� Perceptual grouping operates prior to attentional selection and can inuence the deploymentof spatial attention.An alternative theoretical perspective on selective attention has been suggested recently inwhich competition is ubiquitous and is not limited to competition among locations (Allport, 1993;Desimone & Duncan, 1995; Duncan, 1996; Phaf, van der Heijden, & Hudson, 1990). We call thisthe ubiquitous-competition perspective, and highlight its the main properties as follows.� Attention is viewed as the competition among stimulus representations at many loci in theprocessing stream, from sensory input to response formation. Objects might compete withinsubsystems that represent color, shape, and location information, as well as a subsystem thatrepresents possible actions.� Within each subsystem, a winner-take-all process results in a gain in activity or representationfor one object and a loss for others.� The competitive mechanisms are integrated such that multiple subsystems tend to workconcurrently on the same object.16Note that this statement is not as strong as the claim of feature-integration theory that attention is necessary toperform all types of binding. Even if intra-dimensional bindings are performed automatically, or if experience mightallow inter-dimensional bindings to be performed automatically, or if the modules are only weakly independent, thereis still a role for attention to coordinate processing.
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Mozer & Sitton 35� Priming of representations within any subsystem acts to guide selection (see also Farah, 1994;Grossberg, Mingolla, & Ross, 1994; Mozer, 1991).� Selection by location is no more fundamental than selection on the basis of other stimulus orresponse dimensions.It is beyond the scope of this chapter to try to resolve the di�erences between this perspectiveand the one we have presented. However, we point out that the two are not altogether incompatible.One can accept the primacy of location-based selection, but also allow for competition amonghigher-order object representations. For example, in the model we have presented, inhibitoryconnections could be added between units that represent di�erent letters, forcing a selection ofa single letter. This competition among identity representations would be useful for responseselection; the process could even be primed to a particular letter by preactivating the appropriateletter unit, in accord with the ubiquitous-competition perspective.The di�erence between the two perspectives is primarily one of emphasis, the spatial-selectionperspective addressing capacity limitations in object recognition and the ubiquitous-competitionperspective focusing on the diverse sorts of cues that can be used for selection. However, thetwo perspectives suggest quite di�erent mechanisms of selection on the basis of object identity.The ubiquitous-competition perspective allows for competition to operate fairly late in processingamong high-level object representations, and then for cooperation among the subsystems to workits way back to select the same object everywhere in the processing stream. The spatial-selectionperspective, as we have elaborated, suggests a variety of \quick and dirty" heuristics to guidespatial attention to objects of interest. It remains to be seen which perspective will be most usefulin explaining the broad and complex corpus of psychological data on attentional selection.Issues in computational modelingWe have presented an elaborate computational framework for analyzing and understanding spatialattention. Our goal has not been to convince you that the framework is necessarily correct, butrather that modeling is a valuable exercise that allows one to reason in concrete terms about thecomputational mechanisms. We suspect that some readers will still be skeptical as to the value ofmodel building. For this reason, we conclude with a discussion of general issues in computationalmodeling.Why build computational models?It goes against the tradition of experimental psychology to construct large, complex computationalmodels with dozens to hundreds of parameters. Nonetheless, as the �eld matures, computationalmodels should play an increasingly important role, for the following reasons.� As one tries to explain larger and larger bodies of data and data from diverse experimentalparadigms, the complexity of the model must necessarily increase. Computational modelswith many components and parameters thus become better justi�ed.� Computational models provide a framework for integrating knowledge from behavioral studieswith results from �elds as neuroanatomy and neurophysiology.� Computational models force one to be explicit about one's hypotheses and assumptions. Totest a computational mechanism, it must be speci�ed with precision and detail.
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Mozer & Sitton 36� Computational models provide the ultimate in controlled experimentation. Any simulationexperiment can be replicated exactly. Stimulus materials can be generated that di�er just onthe dimension of interest, without any confounding factors. One can poke at and examineany part of the model. One can precisely lesion or adjust individual components of the modeland observe the consequences.� Computational models can make empirical predictions. The model can be presented withnovel stimuli or a novel experimental paradigm, and its performance can be compared to thatof human subjects. The ability of the model to predict nontrivial experimental �ndings that itwas not explicitly designed to explain is an indication that the model correctly captures someaspect of cognition. In the best of circumstances, an experiment can be designed to distinguishpredictions of one model or model class from another, thereby providing not just support forone model but evidence against another. Of course, the ability to predict experimental resultsis not unique to computational models.� Computational models allow one to observe the consequences of interactions among mecha-nisms. In many models, the e�ect of changing one component trickles to others. It is di�cultto anticipate these e�ects without computer simulation.� Computational models help one to understand the tradeo�s involved in the design of the cog-nitive architecture. It is our conviction that limitations in human cognition are not arbitrary,but are the result of sensible, if not optimal, design decisions given various constraints on thecognitive architecture.We do not mean to suggest that the mere fact that a model has been implemented in computersimulation gives it some intrinsic value, nor the fact that a model is described qualitatively insteadof using equations implies that the model has little value. Any model is useful only to the extentit helps us understand some aspect of cognition.What makes a model compelling?A simple model that can explain a large, diverse corpus of data is very compelling. However,characterizing the complexity of a model is not a trivial task. For linear models, the numberof parameters is a measure of model complexity and of how many data points it is guaranteedto account for. For nonlinear models such as connectionist models, no such direct relationshipexists. Some parameters give the model a lot of exibility, others practically none. For example,in our model, any individual connection strength in the recognition network can be changed withlittle e�ect on the model's qualitative or quantitative behavior; however, a parameter like �, whichdetermines the degree to which unattended information will be processed, dramatically a�ects thequalitative behavior of the model.Perhaps the complexity of a model should be measured in terms of how many basic principlesit embodies, rather than the total number of parameters. For example, our recognition model,while it has several thousand parameters, embodies just a few principles|local receptive �elds,convergence of information from di�erent regions of the retina, and so forth. The speci�c numberof feature types in each layer and the speci�c pattern of connectivity is probably not central to themodel's qualitative behavior.1717To determine which aspects of the model are key and which are incidental, one must conduct simulation studiesover a variety of di�erent architectures. Unfortunately, this is computation intensive work, and is seldom done.
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Mozer & Sitton 37One question to ask when evalutating a model is whether more falls out of the model than hasbeen built into it, that is, whether the model has emergent properties. A clear demonstration ofemergent properties is when the model can make novel empirical predictions that are eventuallyvalidated. However, this is not the only criterion by which a model can be judged as useful. TheOccam's Razor argument is that if a simple model can explain complex patterns of data, then thereis likely to be some truth in the model, regardless of whether the data are old or new.18 Ultimately,it is up to the reader to determine whether the model is indeed simple relative to the amount ofdata it explains.When is a model right or wrong?Odds are that the model is wrong, at least in some detail. This is not to say that the model has novalue; it may be one's current best theory, and the only way one has of contemplating mechanismsof behavior. When the model makes a concrete prediction and this prediction is incorrect, one facesthe challenge of modifying the model to incorporate the new e�ect. More often, the model willnot be su�ciently well speci�ed to predict the outcome of an experiment; in this case, the modelwill need to be elaborated to account for results. Thus, over time, the complexity of the modelwill grow as the corpus of data it can explain grows. If the model is a good one, the model's rateof growth will be far lower than the growth of the corpus. Each time the model is modi�ed orelaborated, it becomes further constrained. Eventually, someone is likely to devise an experimentthat the model is simply not suited to explain. At this point, the model has run its useful life, anda fresh conception of the underlying mechanisms is demanded.What about other models that also explain the data?One question that modelers are constantly asked is: Why should one believe in a particular modelwhen there are probably dozens of models that are just as e�ective in explaining the corpus of data?The response of modelers is usually amusement; it is extremely di�cult to build one model that canexplain the data, let alone a hundred. Those who have never built a model often fail to appreciatethis fact. The appropriate response is perhaps to challenge the questioner to propose an alternativemodel. Then, experiments can be devised for which the models make di�erent predictions, or elsethe models are functionally equivalent.Depth versus breadth in modelingUltimately, one would like a model both broad and deep, \broad" in that it can address a varietyof experimental tasks and response paradigms, and \deep" in that it can explain subtleties andquantitative properties of the data. Traditionally, psychological models have aimed for depthover breadth, and the cost has been that a model of one phenomenon, say the word superioritye�ect (McClelland & Rumelhart, 1981) may have little in common with a model of some otherphenomenon, say the Stroop task (Cohen, Dunbar, & McClelland, 1990), even though the twomodels are ostensibly of the same fundamental process, reading in this case.18In model building, the distinction between old and new data is seldom clear. One often constructs the modelwith particular data in mind, and then discovers that the model, with no or minor changes, can explain other dataas well. In this case, the additional data are in fact predicted by the model, even though the data may have beencollected and published before the model was developed.



www.manaraa.com
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